Respuesta :

Answer:

see explanation

Step-by-step explanation:

(a)

The angle around the centre O of the circle = 360°, then

∠ AOB = 360° - 260° = 100°

Δ AOB is isosceles ( the radii OA and OB are congruent )

The altitude from O bisects ∠ AOB , thus

y = 50°

Since the triangle is isosceles the 2 base angles are congruent, so

x = [tex]\frac{180-100}{2}[/tex] = [tex]\frac{80}{2}[/tex] = 40°

(b)

∠ POR = 360° - 254° = 106°

Δ POR is isosceles (the radii OP and OR are congruent ) , then

the 2 base angles are congruent , thus

a = [tex]\frac{180-106}{2}[/tex] = [tex]\frac{74}{2}[/tex] = 37°