Answer:
The answer to the given points can be defined as follows:
Explanation:
In point 1:
[tex]\bold{v_f^2= v_i^2+2as}\\\\\to v_f=0\\\\\to v_i=20 \frac{m}{s}\\\\\to s= 4.50\ m -3.60 \ m \\\\[/tex]
[tex]=0.9 \ m \\[/tex]
put the value in the above formula:
[tex]\to 0= 20^2+2 \times a \times 0.9\\\\\to -1.8\ a=400\\\\\to -a= \frac{400}{1.8} \\\\ \to a= -222.22\ \ \frac{m}{s^2}[/tex]
[tex]\bold{v_f=v_i+at}\\\\\to 0=20+ (-222.22)t\\\\\to 222.22t=20\\\\\to t=\frac{20}{222.22}\\\\\to t= 0.0900 \ s\\\\\to v_{avg}=\frac{s}{t}=\frac{0.9}{t}= 10\ \frac{m}{s}[/tex]
for point 2:
[tex]t= 0.0900 \ s -\text{found above}[/tex]
for point 3:
[tex]\to |a| = 222.22 \frac{m}{s^2} \text{found above}\\\\\to \bold{|F| = m \cdot |a|}\\\\[/tex]
[tex]=1600 \ kg \times 222.22 \ \frac{m}{s^2} \\\\= 3.55\times 10^{5} \ N[/tex]