Respuesta :

Answer:

40

Step-by-step explanation:

A rhombus diagonals form perpendicular angles. It also bisects and form 4 right triangles. Looking at triangle MAS, we can use pythagorean theorem to find the side MA.

[tex]ms {}^{2} + sa {}^{2} = {ma}^{2} [/tex]

ms=6, sa =8 so we plug that in.

[tex]6 {}^{2} + {8}^{2} = ma {}^{2} [/tex]

Simplify

[tex]36 + 64 = ma {}^{2} [/tex]

[tex]100 = ma {}^{2} [/tex]

take sqr root

[tex] \sqrt{100} = ma[/tex]

[tex]ma = 10[/tex]

Now let find the perimeter

Since perimeter of a Rhombus is 4a where a is the length of a side. We plug it in

[tex]4(10) = 40[/tex]

The answer is 40