11. In rhombus MATH, MS = 6 and SA = 8. Find the perimeter of the rhombus.
M
А
8
A
S
I
T

Answer:
40
Step-by-step explanation:
A rhombus diagonals form perpendicular angles. It also bisects and form 4 right triangles. Looking at triangle MAS, we can use pythagorean theorem to find the side MA.
[tex]ms {}^{2} + sa {}^{2} = {ma}^{2} [/tex]
ms=6, sa =8 so we plug that in.
[tex]6 {}^{2} + {8}^{2} = ma {}^{2} [/tex]
Simplify
[tex]36 + 64 = ma {}^{2} [/tex]
[tex]100 = ma {}^{2} [/tex]
take sqr root
[tex] \sqrt{100} = ma[/tex]
[tex]ma = 10[/tex]
Now let find the perimeter
Since perimeter of a Rhombus is 4a where a is the length of a side. We plug it in
[tex]4(10) = 40[/tex]
The answer is 40