Respuesta :

P = 2(a+b)

a = side

b = base

The perimeter of the parallelogram is [tex]\sqrt[2]{29}+ \sqrt[6]{6}[/tex]

Calculation of the perimeter of the parallelogram:

Since the coordinates are  (2,10), (4,2), (7,8) and (-1,4).​

Now for determining the perimeter first we have to calculate the distance of AB and BC

So,

For AB, the distance is

[tex]= \sqrt{(2-7)^2 + (10-8)^2}\\\\ = \sqrt{29}[/tex]

Now

For BC, the distance is

[tex]= \sqrt{4-7)^2 + (2-8)^2}\\\\ = \sqrt{54}\\\\= 3\sqrt{6}[/tex]

Now the perimeter is

= 2(AB + BC)

= [tex]2(\sqrt29 + 3\sqrt 6)[/tex]

= [tex]\sqrt[2]{29}+ \sqrt[6]{6}[/tex]

Therefore, The perimeter of the parallelogram is [tex]\sqrt[2]{29}+ \sqrt[6]{6}[/tex]

Learn more about perimeter here: https://brainly.com/question/17615672