Respuesta :

Answer:

[tex]a = 8.5t[/tex]

[tex]y = 32.55[/tex]

Step-by-step explanation:

Solving (9): The equation of the table

We start by calculating the slope (m)

[tex]m = \frac{a_2 - a_1}{t_2 - t_1}[/tex]

Where:

[tex](t_1,a_1) = (15,127.5)[/tex]

[tex](t_2,a_2) = (16.5,140.25)[/tex]

[tex]m = \frac{140.25 - 127.5}{16.5 - 15}[/tex]

[tex]m = \frac{12.75}{1.5}[/tex]

[tex]m = 8.5[/tex]

The equation is then calculated using:

[tex]a = m(t - t_2) + a_2[/tex]

So, we have:

[tex]a = 8.5(t - 16.5) + 140.25[/tex]

Open bracket

[tex]a = 8.5t - 140.25 + 140.25[/tex]

[tex]a = 8.5t[/tex]

Solving (10):

[tex]4.8y = 156.24[/tex]

Required

Find x

Divide both sides by 4.8

[tex]y = 32.55[/tex]