Respuesta :

Answer:

[tex]Rate = 9(t+1)[/tex]

Step-by-step explanation:

Given

[tex]f(x) = 9x^2 - 2[/tex]

[tex]Interval = [1,t][/tex]

Required

Determine the average rate of change

This is calculated using:

[tex]Rate = \frac{f(b) - f(a)}{b - a}[/tex]

Where

[tex][a,b] = [1,t][/tex]

So, we have:

[tex]Rate = \frac{f(t) - f(1)}{t - 1}[/tex]

Solve for f(t) and f(1)

[tex]f(t) = 9t^2 - 2[/tex]

[tex]f(1) = 9*1^2 - 2[/tex]

[tex]f(1) = 9 - 2[/tex]

[tex]f(1) = 7[/tex]

So, we have:

[tex]Rate = \frac{9t^2 - 2 - 7}{t - 1}[/tex]

[tex]Rate = \frac{9t^2 - 9}{t - 1}[/tex]

Factorize:

[tex]Rate = \frac{9(t^2 - 1)}{t - 1}[/tex]

Apply difference of two squares

[tex]Rate = \frac{9(t- 1)(t+1)}{t - 1}[/tex]

[tex]Rate = 9(t+1)[/tex]