Respuesta :

Answer:

[tex]\frac{x^2 - 9}{y^2 - 25} / \frac{2x^2 - 6x}{3y^2 - 15y} + \frac{3 - 1.5y}{y + 5} = \frac{3(3y + 2x)}{2x(y+5)}[/tex]  If [tex]x \ne 0 \ \ or\ y \ne 0[/tex]

Step-by-step explanation:

Given

[tex]\frac{x^2 - 9}{y^2 - 25} / \frac{2x^2 - 6x}{3y^2 - 15y} + \frac{3 - 1.5y}{y + 5}[/tex]

Required

Solve

First, we change / to *

[tex]\frac{x^2 - 9}{y^2 - 25} * \frac{3y^2 - 15y}{2x^2 - 6x} + \frac{3 - 1.5y}{y + 5}[/tex]

Apply difference of two squares

[tex]\frac{(x- 3)(x+3)}{(y - 5)(y+5)} * \frac{3y^2 - 15y}{2x^2 - 6x} + \frac{3 - 1.5y}{y + 5}[/tex]

Factorize:

[tex]\frac{(x- 3)(x+3)}{(y - 5)(y+5)} * \frac{3y(y - 5)}{2x(x - 3)} + \frac{3 - 1.5y}{y + 5}[/tex]

x - 3 cancels out:

[tex]\frac{(x+3)}{(y - 5)(y+5)} * \frac{3y(y - 5)}{2x} + \frac{3 - 1.5y}{y + 5}[/tex]

y - 5 cancels out

[tex]\frac{x+3}{y+5} * \frac{3y}{2x} + \frac{3 - 1.5y}{y + 5}[/tex]

[tex]\frac{3y(x+3)}{2x(y+5)} + \frac{3 - 1.5y}{y + 5}[/tex]

Take L.C.M

[tex]\frac{3y(x+3) + 2x(3 - 1.5y)}{2x(y+5)}[/tex]

Open brackets

[tex]\frac{3xy+9y + 6x - 3xy}{2x(y+5)}[/tex]

Collect Like Terms

[tex]\frac{3xy- 3xy+9y + 6x }{2x(y+5)}[/tex]

[tex]\frac{9y + 6x}{2x(y+5)}[/tex]

Factorize:

[tex]\frac{3(3y + 2x)}{2x(y+5)}[/tex]

Hence:

[tex]\frac{x^2 - 9}{y^2 - 25} / \frac{2x^2 - 6x}{3y^2 - 15y} + \frac{3 - 1.5y}{y + 5} = \frac{3(3y + 2x)}{2x(y+5)}[/tex]   If [tex]x \ne 0 \ \ or\ y \ne 0[/tex]