Respuesta :

Answer:

C. [tex]\frac{4}{5}[/tex]

Step-by-step explanation:

In order to find the slope knowing two points, use the slope formula [tex]\frac{y_2 - y_1}{x_2-x_1}[/tex]. [tex]x_1[/tex] and [tex]y_1[/tex] represent the x and y values of one point the line intersects, and [tex]x_2[/tex] and [tex]y_2[/tex] represent the x and y values of another point the line intersects.

Knowing this, use the points (-4, -4) and (6, 4) for the formula. Substitute -4 for [tex]x_1[/tex], -4 for [tex]y_1[/tex], 6 for [tex]x_2[/tex], and 4 for [tex]y_2[/tex]. Then, simplify:

[tex]\frac{(4) - (-4)}{(6) - (-4)} \\= \frac{4+4}{6+4} \\= \frac{8}{10} \\= \frac{4}{5}[/tex]

Thus, [tex]\frac{4}{5}[/tex] is the slope of the line.