Respuesta :

Answer:

1350[tex]\sqrt{3}[/tex] units²

Step-by-step explanation:

The regular hexagon consists of 6 equiangular triangles

The area (A) of a equilateral triangle is calculated as

A = [tex]\frac{s^2\sqrt{3} }{4}[/tex] ( s is the side length )

Here s = 30 , then

A = [tex]\frac{30^2\sqrt{3} }{4}[/tex] = [tex]\frac{900\sqrt{3} }{4}[/tex] = 225[tex]\sqrt{3}[/tex] units²

Thus the area of the regular hexagon is

area = 6 × 225[tex]\sqrt{3}[/tex]

        = 1350[tex]\sqrt{3}[/tex] units² ← exact value

         ≈ 2338.3 units² ( to 1 dec. place )