Respuesta :

Answer:

≈ 4.12 units

Step-by-step explanation:

Calculate the distance d using the distance formula

d = [tex]\sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2 }[/tex]

with (x₁, y₁ ) = (3, 8) and (x₂, y₂ ) = (- 1, 9)

d = [tex]\sqrt{(-1-3)^2+(9-8)^2}[/tex]

   = [tex]\sqrt{(-4)^2+1^2}[/tex]

   = [tex]\sqrt{16+1}[/tex]

   = [tex]\sqrt{17}[/tex]

    ≈ 4.12 ( to the nearest hundredth )

Answer:

The distance between given points is: 4.12 units

Step-by-step explanation:

Given points are:

(3, 8) and (-1, 9)

Here

[tex](x_1,y_1) = (3,8)\\(x_2,y_2) = (-1,9)[/tex]

The distance is calculated using the following formula:

[tex]d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Putting the values, we get

[tex]d = \sqrt{(-1-3)^2+(9-8)^2}\\d = \sqrt{(-4)^2+(1)^2}\\d = \sqrt{16+1}\\d = \sqrt{17}\\d = 4.123105...[/tex]

Rounding off to nearest hundredth

d = 4.12 units

Hence,

The distance between given points is: 4.12 units