Respuesta :
Answer:
The answer is "[tex]\bold{\frac{1}{3} \ n^2 (n - 1) \ units^3}[/tex]"
Step-by-step explanation:
Please find the complete question in the attachment file.
The volume of a pyramid: [tex]V=\frac{1}{3} (\text{base area}) \times (\text{height})[/tex]
In the question if:
[tex]Area= n^2 \ units^2 \\\\height= (n-1) \ units\\[/tex]
apply the value in the volume formula:
[tex]V=\frac{1}{3}\ n^2 \ units \times (n-1) \ units^2\\\\[/tex]
[tex]= \frac{1}{3}\ n^2 \times (n-1) \ units^3\\\\ = \frac{1}{3}\ n^2 (n-1) \ units^3\\\\[/tex]

Answer:
option C). 1/3^2(n − 1) units3
Step-by-step explanation:
just took test