Respuesta :
Answer:
[tex]F = 1.8C +32[/tex]
[tex]F = 86^{\circ}F[/tex]
Step-by-step explanation:
Represent Celsius with C and Fahrenheit with F.
So, we have:
[tex](C_1,F_1) = (100,212)[/tex]
[tex](C_2,F_2) = (0,32)[/tex]
Solving (a): Represent as a linear equation
First, we calculate the slope:
[tex]m = \frac{F_2 - F_1}{C_2 - C_1}[/tex]
This gives:
[tex]m = \frac{32 - 212}{0 - 100}[/tex]
[tex]m = \frac{-180}{- 100}[/tex]
[tex]m = 1.8[/tex]
The linear equation is then calculated using:
[tex]F - F_1 = m(C -C_1)[/tex]
Where
[tex](C_1,F_1) = (100,212)[/tex]
[tex]m = 1.8[/tex]
[tex]F - 212 = 1.8(C -100)[/tex]
[tex]F - 212 = 1.8C -180[/tex]
Make F the subject
[tex]F = 1.8C -180+212[/tex]
[tex]F = 1.8C +32[/tex]
Solving (b): The value of F when C = 30
Substitute 30 for C in [tex]F = 1.8C +32[/tex]
[tex]F = 1.8 * 30 + 32[/tex]
[tex]F = 54 + 32[/tex]
[tex]F = 86[/tex]