In the triangle below, with right angle A, suppose that m is Angle B=(5x+7) and m is Angle C=(4x+29) Find the degree measure of each angle in the triangle. A= 90 B=(5x+7) C=(4x+29)

Respuesta :

Given:

Triangle ABC is right angled at A.

[tex]m\angle B=(5x+7)^\circ[/tex]

[tex]m\angle C=(4x+29)^\circ[/tex]

To find:

The degree measure of each angle in the triangle.

Solution:

According to the given information,

[tex]m\angle A=90^\circ[/tex]

[tex]m\angle B=(5x+7)^\circ[/tex]

[tex]m\angle C=(4x+29)^\circ[/tex]

Now,

[tex]m\angle A+m\angle B+m\angle C=180^\circ[/tex]        (Angle sum property)

[tex]90^\circ+(5x+7)^\circ+(4x+29)^\circ=180^\circ[/tex]

[tex](9x+126)^\circ=180^\circ[/tex]

[tex]9x+126=180[/tex]

[tex]9x=180-126[/tex]

[tex]9x=54[/tex]

Divide both sides by 9.

[tex]x=\dfrac{54}{9}[/tex]

[tex]x=6[/tex]

Now,

[tex]m\angle A=90^\circ[/tex]

[tex]m\angle B=(5(6)+7)^\circ[/tex]

[tex]m\angle B=37^\circ[/tex]

[tex]m\angle C=(4(6)+29)^\circ[/tex]

[tex]m\angle C=53^\circ[/tex]

Therefore, the measures of ∠A, ∠B, ∠C are 90°, 37°, 53° respectively.