Identify all of the root(s) of g(x) = (x2 + 3x - 4)(x2 - 4x + 29).
-1
1
-4
4
2 + 5i
2-5i
-2 + 10i
-2 - 10i

Answer:
1 , -4 , 2 + 5i , 2 - 5i
Step-by-step explanation:
g(x) = (x² + 3x - 4)(x² - 4x + 29)
x² + 3x - 4 = (x-1)(X+4) x = 1 or x = -4
roots of x² - 4x + 29 = ax² + bx + c
x = (-b ± √b²-4ac) / 2a
x = (4 ± √16 - 4*29) / 2 = (4±√-100) / 2 = (4±10i)/2 = 2 ± 5i