A man finds that the angle of elevationof a building is 22º. After walking 20 m towards the building, he finds that the angle of elevation is 33º. Find the height of the
building?​

Respuesta :

Answer:

The height of the building is 21.38 m

Step-by-step explanation:

Trigonometric Ratios

The ratios of the sides of a right triangle are called trigonometric ratios.

The image attached shows the measures and angles provided in the problem. The first angle of elevation is y=22°, the man walks B=20 m and finds the new angle of elevation is x=33°.

It's required to find the height of the building H.

The tangent ratio relates the opposite side with the adjacent side of a given angle. Applying it to the larger triangle:

[tex]\displaystyle \tan y=\frac{\text{opposite leg}}{\text{adjacent leg}}[/tex]

[tex]\displaystyle \tan 22^\circ=\frac{H}{D+B}[/tex]

Multiplying by D+B:

[tex]\tan 22^\circ(D+B)=H[/tex]

Dividing by tan 22°

[tex]\displaystyle D+B=\frac{H}{\tan 22^\circ}[/tex]

Subtracting B:

[tex]\displaystyle D=\frac{H}{\tan 22^\circ}-B\qquad\qquad[1][/tex]

Applying to the smaller triangle:

[tex]\displaystyle \tan 33^\circ=\frac{H}{D}[/tex]

Multiplying by D:

[tex]\tan 33^\circ D=H[/tex]

Substituting from [1]:

[tex]\displaystyle \tan 33^\circ \left(\frac{H}{\tan 22^\circ}-B\right)=H[/tex]

Substituting values:

[tex]\displaystyle 0.6494 \left(\frac{H}{0.4040}-20\right)=H[/tex]

Operating:

[tex]1.6074H-12.988=H[/tex]

[tex]1.6074H-H=12.988[/tex]

[tex]0.6074H=12.988[/tex]

[tex]H = 12.988/0.6074[/tex]

H = 21.38 m

The height of the building is 21.38 m

Ver imagen elcharly64