Respuesta :

Answer:

D. [tex]\frac{4x^{2} \sqrt{29}}{29}[/tex]

Step-by-step explanation:

Given the expression:

 [tex]\frac{40x^{2} \sqrt{x^{12} } }{10x^{2} \sqrt{29x^{8} } }[/tex]

divide by the common factor to have;

[tex]\frac{4\sqrt{x^{12} } }{\sqrt{29x^{8} } }[/tex] = [tex]\frac{4(x^{12}) ^{\frac{1}{2} } }{(29x^{8}) ^{\frac{1}{2} } }[/tex]

        = [tex]\frac{4x^{6} }{\sqrt{29}x^{4} }[/tex]

        = [tex]\frac{4x^{2} }{\sqrt{29} }[/tex]

Rationalize the denominator, we have;

[tex]\frac{4x^{2} }{\sqrt{29} }[/tex] x [tex]\frac{\sqrt{29} }{\sqrt{29} }[/tex]

So that,

[tex]\frac{4x^{2} \sqrt{29} }{29}[/tex]

Thus,

[tex]\frac{40x^{2} \sqrt{x^{12} } }{10x^{2} \sqrt{29x^{8} } }[/tex] = [tex]\frac{4x^{2} \sqrt{29} }{29}[/tex]

The correct option is D.