The slope formula can be used to find the slope, m, of a line with points (L1, y1) and (22, 42).
Y2 - Yi
22 - 21
m
Which is an equivalent equation?
O Y1 = -m (22 – x1) + y2
yı = -m (x2 – 21) – Y2
Oyı = m (22 – 21) + y2
Oyı = m (22 – 21) – Y2

The slope formula can be used to find the slope m of a line with points L1 y1 and 22 42 Y2 Yi 22 21 m Which is an equivalent equation O Y1 m 22 x1 y2 yı m x2 21 class=

Respuesta :

Answer:

A. [tex] y_1 = -m(x_2 - x_1) + y_2 [/tex]

Step-by-step explanation:

Given, slope formula = [tex] m = \frac{y_2 - y_1}{x_2 - x_1} [/tex]

To find an equivalent equation, let's make [tex] y_1 [/tex] the subject of the formula.

[tex] m = \frac{y_2 - y_1}{x_2 - x_1} [/tex]

Cross multiply

[tex] 1(y_2 - y_1) = m(x_2 -x_1) [/tex]

[tex] y_2 - y_1 = m(x_2 - x_1) [/tex]

Subtract [tex] y_2 [/tex] from both sides

[tex] y_2 - y_1 - y_2 = m(x_2 -x_1) - y_2 [/tex]

[tex] - y_1 = m(x_2 - x_1) - y_2 [/tex]

Divide both sides by -1

[tex] \frac{- y_1}{-1} = \frac{m(x_2 -x_1) - y_2}{-1} [/tex]

[tex] y_1 = -m(x_2 - x_1) + y_2 [/tex]