Respuesta :

Answer:

The correct corresponding part is;

[tex]\overline {CB}[/tex] ≅ [tex]\overline {CD}[/tex]

Step-by-step explanation:

The information given symbolically in the diagram are;

ΔCAB is congruent to ΔCED (ΔCAB ≅ ΔCED)

Segment [tex]\overline {CA}[/tex] is congruent to [tex]\overline {CE}[/tex] ( [tex]\overline {CA}[/tex] ≅ [tex]\overline {CE}[/tex])

Segment [tex]\overline {CB}[/tex] is congruent to [tex]\overline {CD}[/tex] ( [tex]\overline {CB}[/tex] ≅ [tex]\overline {CD}[/tex])

From which, we have;

∠A ≅ ∠E by Congruent Parts of Congruent Triangles are Congruent (CPCTC)

∠B ≅ ∠D by CPCTC

Segment [tex]\overline {AB}[/tex] is congruent to [tex]\overline {DE}[/tex] ([tex]\overline {AB}[/tex] ≅ [tex]\overline {DE}[/tex]) by CPCTC

Segment [tex]\overline {AE}[/tex] bisects [tex]\overline {BD}[/tex]

Segment [tex]\overline {BD}[/tex] bisects [tex]\overline {AE}[/tex]

Therefore, the correct option is [tex]\overline {CB}[/tex] ≅ [tex]\overline {CD}[/tex]