Respuesta :

Answer:

I think you multiply its height by its width for the area, the volume= LXWXH.

Step-by-step explanation:

Step-by-step explanation:

First , Split the given shape into two parts : Trapezium and rectangle :

Here , 18 m and 11 m are the opposite parallel side and (15-8) = 7m is the height of the trapezium.

[tex] \boxed{ \sf{Area \: of \: trapezium = \frac{1}{2} h(a + b)}}[/tex]

⤑ [tex] \tt{ \frac{1}{2} \times 7(18 + 11})[/tex]

⤑ [tex] \sf{ \frac{1}{2} \times 7 \times 29}[/tex]

⤑ [tex] \sf{101.5 \: {m}}^{2} [/tex]

Area of trapezium = 101.5 m²

In rectangle , 18 m is the length and 8 m is the width.

[tex] \boxed{ \sf{Area \: of \: a \: rectangle = l \times w}}[/tex]

⤑ [tex] \sf{18 \: m \: \times 8 \: m}[/tex]

⤑ [tex] \sf{144 \: {m}}^{2} [/tex]

Area of a rectangle = 144 m

Now , Finding total area of given shape :

[tex] \boxed{ \sf{Total \: area = Area \: of \: trapezium + area \: of \: a \: rectangle}}[/tex]

⤑ [tex] \sf{101.5 \: {m}^{2} + 144 \: {m}}^{2} [/tex]

⤑ [tex] \sf{245.5 {m}}^{2} [/tex]

[tex] \red{ \boxed{ \boxed{ \tt{⇾ \: Our \: final \: answer : \boxed{ \underline{ \tt{245.5 \: {m}^{2} }}}}}}}[/tex]

Hope I helped ! ツ

Have a wonderful day / night ! ♡

▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁