Respuesta :

chuity

Answer:

[tex]\frac{x-5}{x+1}[/tex], [tex]x\neq -1, x\neq -9[/tex]

Step-by-step explanation:

x^2 + 4x - 45

= (x+9)(x-5)

x^2 + 10x + 9

= (x+9)(x+1)

So the fraction goes to

[tex]\frac{(x+9)(x-5)}{(x+9)(x+1)}[/tex] which is [tex]\frac{x-5}{x+1}[/tex].

Since the denominator cannot be 0, x^2 + 10x + 9 cannot be equal to 0. Therefore x cannot be -1 or -9.