Respuesta :

Answer:

The equation of perpendicular bisector is:

[tex]y = 2x-2[/tex]

Step-by-step explanation:

Given the points

  • (-4, 3)
  • (8, -3)

First, we need to find the midpoint of the points (-4, 3) and (8, -3)

[tex]\mathrm{Midpoint\:of\:}\left(x_1,\:y_1\right),\:\left(x_2,\:y_2\right):\quad \left(\frac{x_2+x_1}{2},\:\:\frac{y_2+y_1}{2}\right)[/tex]

[tex]\left(x_1,\:y_1\right)=\left(-4,\:3\right),\:\left(x_2,\:y_2\right)=\left(8,\:-3\right)[/tex]

[tex]=\left(\frac{8-4}{2},\:\frac{-3+3}{2}\right)[/tex]

[tex]=\left(2,\:0\right)[/tex]

Thus, the midpoint of the points is: (2, 0)

Now, finding the slope between (-4, 3) and (8, -3)

[tex]\mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}[/tex]

[tex]\left(x_1,\:y_1\right)=\left(-4,\:3\right),\:\left(x_2,\:y_2\right)=\left(8,\:-3\right)[/tex]

[tex]m=-\frac{1}{2}[/tex]

Therefore, the slope m = -1/2

The slope of the line perpendicular to the segment = [-1] / [-1/2] = 2

Using the point-slope form of the equation of the line, the equation of perpendicular bisector is:

[tex]y-y_1=m\left(x-x_1\right)[/tex]

where m is the slope of the line

substituting the slope 2 and the point (2, 0)

[tex]y-y_1=m\left(x-x_1\right)[/tex]

[tex]y - 0 = 2 (x-2)[/tex]

[tex]y = 2x-2[/tex]

Therefore, the equation of perpendicular bisector is:

[tex]y = 2x-2[/tex]