Respuesta :
E
=
h
f
=
6.626
×
10
−
34
J
⋅
s
×
5.00
×
10
14
s
−
1
=
3.31
×
10
−
19
J
The energy is
3.31
×
10
−
19
J
.
=
h
f
=
6.626
×
10
−
34
J
⋅
s
×
5.00
×
10
14
s
−
1
=
3.31
×
10
−
19
J
The energy is
3.31
×
10
−
19
J
.
Value of constant 'k' = -0.041097
Equation modeling the exponential decay → [tex]\text{ln}\frac{N}{N_0}=-0.41097t[/tex]
Rule for the radioactive decay:
- Rule for the radioactive decay is given by the expression,
[tex]\text{ln}\frac{N}{N_0}=-kt[/tex]
Here, N = Amount remaining after 't' years
N₀ = Initial amount of the radioactive element
k = Constant
t = Period of decay
Given in the question,
- N = 100 gms
- N₀ = 75 gms
- t = 5 years
Substitute these values in the expression for the value of 'k',
[tex]\text{ln}\frac{75}{100}=-7k[/tex]
[tex]k=\frac{1}{7}[(\text{ln}(75)-\text{ln}(100)][/tex]
[tex]k=\frac{1}{7}[4.317488-4.605170][/tex]
k = -0.041097
Equation modeling the exponential decay → [tex]\text{ln}\frac{N}{N_0}=-0.41097t[/tex]
Therefore, value of constant 'k' = -0.041097
Equation modeling the exponential decay → [tex]\text{ln}\frac{N}{N_0}=-0.41097t[/tex]
Learn more about the radioactive decay here,
https://brainly.com/question/9660135?referrer=searchResults