Answer:
[tex]\displaystyle x=\frac{-5 \pm \sqrt{29}}{4}[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Algebra I
- Factoring
- Standard Form: ax² + bx + c = 0
- Quadratic Formula: [tex]\displaystyle x=\frac{-b\pm\sqrt{b^2-4ac} }{2a}[/tex]
Step-by-step explanation:
Step 1: Define
4x² + 10x - 1 = 0
Step 2: Identify Variables
a = 4
b = 10
c = -1
Step 3: Find roots
- Substitute in variables [QF]: [tex]\displaystyle x=\frac{-10\pm\sqrt{10^2-4(4)(-1)} }{2(4)}[/tex]
- [√Radical] Exponents: [tex]\displaystyle x=\frac{-10\pm\sqrt{100-4(4)(-1)} }{2(4)}[/tex]
- [√Radical] Multiply: [tex]\displaystyle x=\frac{-10\pm\sqrt{100+16}}{2(4)}[/tex]
- [√Radical] Add: [tex]\displaystyle x=\frac{-10\pm\sqrt{116}}{2(4)}[/tex]
- [Fraction] Multiply: [tex]\displaystyle x=\frac{-10\pm\sqrt{116}}{8}[/tex]
- [√Radical] Simplify: [tex]\displaystyle x=\frac{-10\pm 2\sqrt{29}}{8}[/tex]
- [Fraction] Factor: [tex]\displaystyle x=\frac{2(-5\pm \sqrt{29})}{8}[/tex]
- [Fraction] Simplify: [tex]\displaystyle x=\frac{-5 \pm \sqrt{29}}{4}[/tex]