Respuesta :

Given:

In triangle ACD, BE||CD, AB = 20 cm, BC = 5 cm, CD = 18 cm, AE = 26 cm.

To find:

(a) The length of ED.

(b) The length of BE.

Solution:

In triangle ABE and ACD,

BE||CD, so angle ABE and angles ACD are corresponding angles. So, their measure are equal.

[tex]m\angle ABE=m\angle ACD[/tex]          (Corresponding angles)

[tex]m\angle BAE=m\angle CAD[/tex]          (Common angle)

Now,

[tex]\Delta ABE\sim \Delta ACD[/tex]

Corresponding sides of similar triangles are proportional.

[tex]\dfrac{AB}{AC}=\dfrac{BE}{CD}=\dfrac{AE}{AD}[/tex]

(a)

[tex]\dfrac{AB}{AC}=\dfrac{AE}{AD}[/tex]

[tex]\dfrac{20}{20+5}=\dfrac{26}{AD}[/tex]

[tex]\dfrac{20}{25}=\dfrac{26}{AD}[/tex]

[tex]0.8=\dfrac{26}{AD}[/tex]

Isolate AD.

[tex]0.8AD=26[/tex]

[tex]AD=\dfrac{26}{0.8}[/tex]

[tex]AD=32.5[/tex]

Now,

[tex]AD=AE+ED[/tex]

[tex]32.5=26+ED[/tex]

[tex]32.5-26=ED[/tex]

[tex]6.5=ED[/tex]

Therefore, the length of ED is 6.5.

(b)

[tex]\dfrac{AB}{AC}=\dfrac{BE}{CD}[/tex]

[tex]\dfrac{20}{25}=\dfrac{BE}{18}[/tex]

[tex]0.8=\dfrac{BE}{18}[/tex]

Multiply both sides by 18.

[tex]14.4=BE[/tex]

Therefore, the length of BE is 14.4.