Respuesta :

Answer:

38. <1 = [tex]38^{o}[/tex], <2 = [tex]32^{o}[/tex], <3 = [tex]110^{o}[/tex]

39. <1 = [tex]71^{o}[/tex], <2 = [tex]28^{o}[/tex], and <3 = [tex]81^{o}[/tex]

Step-by-step explanation:

38. Sum of angles in a triangle = [tex]180^{o}[/tex]

So that;

38 + 110 + <2 = [tex]180^{o}[/tex]

148 + <2 = [tex]180^{o}[/tex]

<2 = [tex]180^{o}[/tex] - 148

<2 = [tex]32^{o}[/tex]

Thus,

<1 = [tex]38^{o}[/tex] (alternate angle principle)

<3 = [tex]110^{o}[/tex]

Therefore;

<1 = [tex]38^{o}[/tex], <2 = [tex]32^{o}[/tex], <3 = [tex]110^{o}[/tex]

39. <2 = [tex]28^{o}[/tex] (alternate angle principle)

So that;

sum of angles in a triangle = [tex]180^{o}[/tex]

<1 + <2 + 81 = [tex]180^{o}[/tex]

<1 + [tex]28^{o}[/tex] + 81 = [tex]180^{o}[/tex]

<1 + 109 = [tex]180^{o}[/tex]

<1 = [tex]180^{o}[/tex] - 109

   = [tex]71^{o}[/tex]

<1 = [tex]71^{o}[/tex]

<3 = [tex]81^{o}[/tex]

<1 = [tex]71^{o}[/tex], <2 = [tex]28^{o}[/tex], and <3 = [tex]81^{o}[/tex]