please help and show work if you can

Answer:
38. <1 = [tex]38^{o}[/tex], <2 = [tex]32^{o}[/tex], <3 = [tex]110^{o}[/tex]
39. <1 = [tex]71^{o}[/tex], <2 = [tex]28^{o}[/tex], and <3 = [tex]81^{o}[/tex]
Step-by-step explanation:
38. Sum of angles in a triangle = [tex]180^{o}[/tex]
So that;
38 + 110 + <2 = [tex]180^{o}[/tex]
148 + <2 = [tex]180^{o}[/tex]
<2 = [tex]180^{o}[/tex] - 148
<2 = [tex]32^{o}[/tex]
Thus,
<1 = [tex]38^{o}[/tex] (alternate angle principle)
<3 = [tex]110^{o}[/tex]
Therefore;
<1 = [tex]38^{o}[/tex], <2 = [tex]32^{o}[/tex], <3 = [tex]110^{o}[/tex]
39. <2 = [tex]28^{o}[/tex] (alternate angle principle)
So that;
sum of angles in a triangle = [tex]180^{o}[/tex]
<1 + <2 + 81 = [tex]180^{o}[/tex]
<1 + [tex]28^{o}[/tex] + 81 = [tex]180^{o}[/tex]
<1 + 109 = [tex]180^{o}[/tex]
<1 = [tex]180^{o}[/tex] - 109
= [tex]71^{o}[/tex]
<1 = [tex]71^{o}[/tex]
<3 = [tex]81^{o}[/tex]
<1 = [tex]71^{o}[/tex], <2 = [tex]28^{o}[/tex], and <3 = [tex]81^{o}[/tex]