Answer:
[tex](rs)(4) = 8[/tex]
Step-by-step explanation:
Given
[tex]r(x) = 2\sqrt{x[/tex]
[tex]s(x) = \sqrt x[/tex]
Required
Determine [tex](rs)(4)[/tex]
In functions:
[tex](fg)(x) = f(x) * g(x)[/tex]
This implies that:
[tex](rs)(x) = r(x) * s(x)[/tex]
Substitute values for r(x) and s(x)
[tex](rs)(x) = 2\sqrt{x} * \sqrt{x}[/tex]
[tex](rs)(x) = 2(\sqrt{x})^2[/tex]
[tex](rs)(x) = 2x[/tex]
Substitute 4 for x
[tex](rs)(4) = 2 * 4[/tex]
[tex](rs)(4) = 8[/tex]