A ball is thrown directly downward with an initial speed of 7.70 m/s, from a height of 30.2 m. After what time interval does it strike the ground?

Respuesta :

Answer:

[tex]t = 1.82[/tex]

Explanation:

Given

[tex]u = 7.70m/s[/tex] -- initial velocity

[tex]s = 30.2m[/tex] --- height

Required

Determine the time to hit the ground

This will be solved using the following motion equation.

[tex]s = ut + \frac{1}{2}gt^2[/tex]

Where

[tex]g = 9,8m/s^2[/tex]

So, we have:

[tex]30.2 = 7.70t + \frac{1}{2} * 9.8 * t^2[/tex]

[tex]30.2 = 7.70t + 4.9 * t^2[/tex]

Subtract 30.2 from both sides

[tex]30.2 -30.2 = 7.70t + 4.9 * t^2 - 30.2[/tex]

[tex]0 = 7.70t + 4.9 * t^2 - 30.2[/tex]

[tex]0 = 7.70t + 4.9t^2 - 30.2[/tex]

[tex]7.70t + 4.9t^2 - 30.2 = 0[/tex]

[tex]4.9t^2 + 7.70t - 30.2 = 0[/tex]

Solve using quadratic formula:

[tex]t = \frac{-b\±\sqrt{b^2 - 4ac}}{2a}[/tex]

Where

[tex]a = 4.9;\ b = 7.70;\ c = -30.2[/tex]

[tex]t = \frac{-7.70\±\sqrt{7.70^2 - 4*4.9*-30.2}}{2*4.9}[/tex]

[tex]t = \frac{-7.70\±\sqrt{651.21}}{9.8}[/tex]

[tex]t = \frac{-7.70\±25.52}{9.8}[/tex]

Split the expression

[tex]t = \frac{-7.70+25.52}{9.8}[/tex] or [tex]t = \frac{-7.70-25.52}{9.8}[/tex]

[tex]t = \frac{17.82}{9.8}[/tex] or [tex]t = -\frac{33.22}{9.8}[/tex]

Time can't be negative;  So, we have:

[tex]t = \frac{17.82}{9.8}[/tex]

[tex]t = 1.82[/tex]

Hence, the time to hit the ground is 1.82 seconds