Respuesta :

Answer:

16) The ratios [tex]\frac{5}{27},\frac{3}{16.2}[/tex] are proportional.

17) The ratios [tex]\frac{34}{9},\frac{25}{7}[/tex] are not proportional.

Step-by-step explanation:

we need to determine if the ratios form the proportions.

16) [tex]\frac{5}{27},\frac{3}{16.2}[/tex]

If the ratios are proportional, their cross product will be equal. i.e. [tex]\frac{a}{b}=\frac{c}{d}[/tex]

So, finding cross product and checking:

[tex]\frac{5}{27}=\frac{3}{16.2}\\5(16.2)=3(27)\\81=81[/tex]

Since the cross product is equal i.e. 81=81 so, the ratios are proportional.

The ratios [tex]\frac{5}{27},\frac{3}{16.2}[/tex] are proportional.

17) [tex]\frac{34}{9},\frac{25}{7}[/tex]

If the ratios are proportional, their cross product will be equal. i.e.

[tex]\frac{a}{b}=\frac{c}{d}\\ad=cb[/tex]

So, finding cross product and checking:

[tex]\frac{34}{9}=\frac{25}{7}\\7(34)=25(9)\\238\neq 225[/tex]

Since the cross product is not equal i.e. 238≠225 so, the ratios are not proportional.

The ratios [tex]\frac{34}{9},\frac{25}{7}[/tex] are not proportional.