An aqueous solution of ethanol, CH3CH2OH, has a concentration of 5.82 mol/L and has a density of 0.957 g/mL. What are the mass percent and mole fraction of CH3CH2OH in this solution

Respuesta :

Answer:

1. Mass percent of ethanol = 28.02 %.

2. Mole fraction of ethanol = 0.13.

   

Explanation:

1. To find the mass percent we need to use the following equation:

[tex]\%_{m/m} = \frac{m_{e}}{m_{s}} \times 100[/tex]

Where:

[tex]m_{e}[/tex] is the mass of ethanol

[tex]m_{s}[/tex] is the mass of the solution

We need to calculate the mass of ethanol and the mass of the solution:

[tex] d = \frac{m_{s}}{V} [/tex]

Where:

d: is the density of the solution = 0.957 g/mL

V: is the volume = 1 L

[tex] m_{s} = d*V = 0.957 \frac{g}{mL}*\frac{1000 mL}{1 L}*1 L = 957 g [/tex]

Now, from the concentration we can find the mass of ethanol:

[tex] C = \frac{n_{e}}{V} = \frac{m_{e}}{M_{e}*V} [/tex]                      

Where:

[tex]M_{e}[/tex]: is the molar mass of ethanol = 46.07 g/mol

[tex]n_{e}[/tex]: is the number of moles of ethanol = m/M

[tex] m_{e} = C*M*V = 5.82 \frac{mol}{L}*46.07 \frac{g}{mol}*1 L = 268.13 g [/tex]

Finally, the mass percent of ethanol is:

[tex]\%_{m/m} = \frac{268.13 g}{957 g} \times 100 = 28.02 \%[/tex]

2. The mole fraction of ethanol is given by:

[tex] \chi_{e} = \frac{n_{e}}{n_{s}} [/tex]

The number of moles of ethanol is:

[tex]n_{e} = \frac{m_{e}}{M_{e}} = \frac{268.13 g}{46.07 g/mol} = 5.82 moles[/tex]

And the moles of the solution is:    

[tex] n_{s} = n_{e} + n_{w} [/tex]

Where w is for water

[tex] n_{s} = n_{e} + \frac{m_{w}}{M_{w}} [/tex]

[tex] n_{s} = n_{e} + \frac{m_{s} - m_{e}}{M_{w}} [/tex]

[tex]n_{s} = 5.82 moles + \frac{957 g - 268.13 g}{18 g/mol} = 44.09 moles[/tex]

Hence, the mole fraction of ethanol is:

[tex]\chi_{e} =\frac{5.82 moles}{44.09 moles}=0.13[/tex]

I hope it helps you!