A merry-go-round with a rotational inertia of 600 kg m2 and a radius of 3.0 m is initially at rest. A 20 kg boy approaches the merry-go-round along a path tangent to the rim of the at a speed of 5.0 m/s. Determine the angular velocity of the system after the boy hops on the merry-go-round.

Respuesta :

Answer:

The velocity of the merry-go-round after the boy hops on the merry-go-round is 1.5 m/s

Explanation:

The rotational inertia of the merry-go-round = 600 kg·m²

The radius of the merry-go-round = 3.0 m

The mass of the boy = 20 kg

The speed with which the boy approaches the merry-go-round = 5.0 m/s

[tex]F_T \cdot r = I \cdot \alpha = m \cdot r^2 \cdot \alpha[/tex]

Where;

[tex]F_T[/tex] = The tangential force

I =  The rotational inertia

m = The mass

α = The angular acceleration

r = The radius of the merry-go-round

For the merry go round, we have;

[tex]I_m \cdot \alpha_m = I_m \cdot \dfrac{v_m}{r \cdot t}[/tex]

[tex]I_m[/tex] = The rotational inertia of the merry-go-round

[tex]\alpha _m[/tex] = The angular acceleration of the merry-go-round

[tex]v _m[/tex] = The linear velocity of the merry-go-round

t = The time of motion

For the boy, we have;

[tex]I_b \cdot \alpha_b = m_b \cdot r^2 \cdot \dfrac{v_b}{r \cdot t}[/tex]

Where;

[tex]I_b[/tex] = The rotational inertia of the boy

[tex]\alpha _b[/tex] = The angular acceleration of the boy

[tex]v _b[/tex] = The linear velocity of the boy

t = The time of motion

When the boy jumps on the merry-go-round, we have;

[tex]I_m \cdot \dfrac{v_m}{r \cdot t} = m_b \cdot r^2 \cdot \dfrac{v_b}{r \cdot t}[/tex]

Which gives;

[tex]v_m = \dfrac{m_b \cdot r^2 \cdot \dfrac{v_b}{r \cdot t} \cdot r \cdot t}{I_m} = \dfrac{m_b \cdot r^2 \cdot v_b}{I_m}[/tex]

From which we have;

[tex]v_m = \dfrac{20 \times 3^2 \times 5}{600} = 1.5[/tex]

The velocity of the merry-go-round, [tex]v_m[/tex], after the boy hops on the merry-go-round = 1.5 m/s.