Respuesta :

Question:

Find the mean and compare it with the median. Find the standard deviation and compare it with the interquartile range. Calculate s for the data 4, 1, 3, 10, 2.

Answer:

(a)

[tex]Mean = 4[/tex]

[tex]Median=3[/tex]

[tex]Mean > Median[/tex]

(b)

[tex]IQR = 2[/tex]

[tex]SD = 3.2[/tex]

[tex]SD> IQR[/tex]

Step-by-step explanation:

Given:

Data: 4, 1, 3, 10, 2.

Solving (a): The mean and the Median

The mean is calculated as follows:

[tex]Mean = \frac{1}{n} \sum x[/tex]

Where

[tex]n = 5[/tex] i.e 5 data

So, the expression becomes:

[tex]Mean = \frac{1}{5}(4 + 1+3+10+2)[/tex]

[tex]Mean = \frac{1}{5}(20)[/tex]

[tex]Mean = 4[/tex]

Calculating the Median:

First, arrange the order (ascending order):

[tex]Data: 1, 2,3,4,10[/tex]

Because n is odd

The median is represented as:

[tex]Median = (\frac{n+1}{2})th\ item[/tex]

[tex]Median = (\frac{5+1}{2})th\ item\\[/tex]

[tex]Median = (\frac{6}{2})th\ item[/tex]

[tex]Median = 3rd\ item[/tex]

From the arranged data, the 3rd item is 3.

Hence:

[tex]Median=3[/tex]

By comparison, the mean is greater than the median because [tex]4 > 3[/tex]

Solving (b): Standard Deviation and IQR

The standard deviation is calculated as follows:

[tex]SD= \sqrt{\frac{\sum (x_i - Mean)^2}{n}[/tex]

So, we have:

[tex]SD= \sqrt{\frac{(4 - 4)^2+(1 - 4)^2+(3 - 4)^2+(10 - 4)^2+(2 - 4)^2}{5}[/tex]

[tex]SD= \sqrt{\frac{(0)^2+(- 3)^2+(- 1)^2+(6)^2+(-2)^2}{5}[/tex]

[tex]SD= \sqrt{\frac{0+9+1+36+4}{5}[/tex]

[tex]SD= \sqrt{\frac{50}{5}[/tex]

[tex]SD= \sqrt{10}[/tex]

[tex]SD = 3.2[/tex]

Calculating IQR

[tex]IQR = Q_3 - Q_1[/tex]

[tex]Data: 1, 2,3,4,10[/tex]

In (a), we calculate the median as:

[tex]Median=3[/tex]

First, we calculate [tex]Q_1[/tex]

[tex]Q_1 = Median\ of\ the\ first\ half.[/tex]

The first half is:

[tex]First\ Half = 1,2,3[/tex]

So:

[tex]Q_1 = 2[/tex]

First, we calculate [tex]Q_3[/tex]

[tex]Q_3 = Median\ of\ the\ second\ half.[/tex]

[tex]Second\ Half = 3,4,10[/tex]

So:

[tex]Q_3 = 4[/tex]

Recall that:

[tex]IQR = Q_3 - Q_1[/tex]

[tex]IQR = 4 - 2[/tex]

[tex]IQR = 2[/tex]

So, we have:

[tex]IQR = 2[/tex]

[tex]SD = 3.2[/tex]

By comparison, the standard deviation is greater than the IQR because:

[tex]3.2 > 2[/tex]

So,

[tex]SD> IQR[/tex]