A particle moves along a horizontal line. Its position function is s(t) for t is greater than or equal to 0. For each problem, find the velocity function v(t) and the acceleration function a(t).
1. s(t) = -t^4 + 12t^3
2. s(t) = -t^4 + 8t^3

Respuesta :

Answer:

1) Velocity

[tex]v(t) = -4\cdot t^{3}+36\cdot t^{2}[/tex]

Acceleration

[tex]a(t) = -12\cdot t^{2}+72\cdot t[/tex]

2) Velocity

[tex]v(t) = -4\cdot t^{3}+24\cdot t^{2}[/tex]

Acceleration

[tex]a(t) = -12\cdot t^{2}+48\cdot t[/tex]

Step-by-step explanation:

From Physics we remember that velocity ([tex]v(t)[/tex]) and acceleration ([tex]a(t)[/tex]) are the first and second derivatives of the function position in time. That is:

1) Let [tex]s(t) = -t^{4}+12\cdot t^{3}[/tex], where [tex]t \ge 0[/tex]. The functions velocity and aceleration are, respectively:

Velocity

[tex]v(t) = -4\cdot t^{3}+36\cdot t^{2}[/tex]

Acceleration

[tex]a(t) = -12\cdot t^{2}+72\cdot t[/tex]

2) Let [tex]s(t) = -t^{4}+8\cdot t^{3}[/tex], where [tex]t\ge 0[/tex]. The functions velocity and acceleration are, respectively:

Velocity

[tex]v(t) = -4\cdot t^{3}+24\cdot t^{2}[/tex]

Acceleration

[tex]a(t) = -12\cdot t^{2}+48\cdot t[/tex]