Respuesta :

Answer:

[tex]n = 11[/tex]

Step-by-step explanation:

Given

[tex]^nP_2 = 110[/tex]

Required

Solve for n

[tex]^nP_2 = 110[/tex]

Start by applying permutation formula:

[tex]\frac{n!}{(n-2)!} = 110[/tex]

Expand the numerator

[tex]\frac{n*(n-1) * (n-2)!}{(n-2)!} = 110[/tex]

(n-2)! cancels out

[tex]n*(n-1) = 110[/tex]

Expand

[tex]n^2 - n = 110[/tex]

Subtract 110 from both sides

[tex]n^2 - n -110= 110-110[/tex]

[tex]n^2 - n -110= 0[/tex]

Expand:

[tex]n^2 - 11n +10n-110= 0[/tex]

Factorize:

[tex]n(n-11) +10(n-11)= 0[/tex]

[tex](n+10)(n-11) = 0[/tex]

This implies that:

[tex]n + 10 = 0\ or\ n - 11 = 0[/tex]

[tex]n = -10\ or\ n = 11[/tex]

But n can't be negative.

So:

[tex]n = 11[/tex]