Respuesta :

Given:

The function is [tex]y=x(x+2)^2[/tex].

To find:

The zeros and their multiplicity.

Solution:

A polynomial is defined as

[tex]y=a(x-c_1)^{m_1}(x-c_2)^{m_2}...(x-c_n)^{m_n}[/tex]       ...(i)

where, a is a constant, [tex]c_1,c_2,...,c_n[/tex] are zeros with multiplicity [tex]m_1,m_2,...,m_n[/tex] respectively.

We have,

[tex]y=x(x+2)^2[/tex]

It can be written as

[tex]y=(x-0)^1(x-(-2))^2[/tex]          ...(ii)

On comparing (i) and (ii), we get

[tex]c_1=0,m_1=1[/tex]

[tex]c_2=-2,m_2=2[/tex]

Therefore, the zeros of the given function are 0 and -2 with multiplicity 1 and 2 respectively.