Respuesta :

Answer:

We conclude that:

[tex]3\cdot \:2\begin{pmatrix}-2&3&0\\ -4&2&6\\ 6&-5&6\end{pmatrix}=\begin{pmatrix}-12&18&0\\ -24&12&36\\ 36&-30&36\end{pmatrix}[/tex]

Hence, option B is correct.

Step-by-step explanation:

Given the expression

[tex]3\times 2\begin{pmatrix}-2&3&0\\ \:-4&2&6\\ \:6&-5&6\end{pmatrix}[/tex]

solving

[tex]3\times 2\begin{pmatrix}-2&3&0\\ \:-4&2&6\\ \:6&-5&6\end{pmatrix}[/tex]

Scalar Multiplication: Multiply each of the matrix elements by a scalar

[tex]=\begin{pmatrix}3\cdot \:2\left(-2\right)&3\cdot \:2\cdot \:3&3\cdot \:2\cdot \:0\\ 3\cdot \:2\left(-4\right)&3\cdot \:2\cdot \:2&3\cdot \:2\cdot \:6\\ 3\cdot \:2\cdot \:6&3\cdot \:2\left(-5\right)&3\cdot \:2\cdot \:6\end{pmatrix}[/tex]

Simplify each element

[tex]=\begin{pmatrix}-12&18&0\\ -24&12&36\\ 36&-30&36\end{pmatrix}[/tex]

Therefore, we conclude that:

[tex]3\cdot \:2\begin{pmatrix}-2&3&0\\ -4&2&6\\ 6&-5&6\end{pmatrix}=\begin{pmatrix}-12&18&0\\ -24&12&36\\ 36&-30&36\end{pmatrix}[/tex]

Hence, option B is correct.