Respuesta :

Answer:

The complete table will be:

Term #                Value of aₙ

1                            15

5                           27

10                          42

20                         72

Step-by-step explanation:

Given the sequence expression

aₙ = 15 + 3(n-1)

Substituting n = 1 for the first term

aₙ = 15 + 3(n-1)

a₁ = 15 + 3(1-1)

a₁ = 15 + 3(0)

a₁ = 15 + 0

a₁ = 15

Substituting n = 5 for the 5th term

aₙ = 15 + 3(n-1)

a₅ = 15 + 3(5-1)

a₅ = 15 + 3(4)

a₅ = 15 + 12

a₅ = 27

Substituting n = 10 for the 10th term

aₙ = 15 + 3(n-1)

a₁₀ = 15 + 3(10-1)

a₁₀ = 15 + 3(9)

a₁₀ = 15 + 27

a₁₀ = 42

Substituting n = 20 for the 20th term

aₙ = 15 + 3(n-1)

a₂₀ = 15 + 3(20-1)

a₂₀ = 15 + 3(19)

a₂₀ = 15 + 57

a₂₀ = 72

Therefore, the complete table will be:

Term #                Value of aₙ

1                            15

5                           27

10                          42

20                         72