Respuesta :

Answer:

The solution to the system of equations

  • p = 0
  • q = -50

Hence, the value of q = -50

Step-by-step explanation:

Given the system of equations

[tex]\begin{bmatrix}-16p-2q=100\\ p-4q=200\end{bmatrix}[/tex]

solving to determine the value of q

Multiply p − 4q = 200 by 16:      [tex]16p-64q=3200[/tex]

[tex]\begin{bmatrix}-16p-2q=100\\ 16p-64q=3200\end{bmatrix}[/tex]

so adding the equations

[tex]16p-64q=3200[/tex]

[tex]+[/tex]

[tex]\underline{-16p-2q=100}[/tex]

[tex]-66q=3300[/tex]

so

[tex]\begin{bmatrix}-16p-2q=100\\ -66q=3300\end{bmatrix}[/tex]

solve -66q = 3300

[tex]-66q=3300[/tex]

Divide both sides by -66

[tex]\frac{-66q}{-66}=\frac{3300}{-66}[/tex]

[tex]q=-50[/tex]

substituting q = -50 in −16p − 2q = 100

[tex]-16p-2\left(-50\right)=100[/tex]

[tex]-16p+100=100[/tex]

Subtract 100 from both sides

[tex]-16p+100-100=100-100[/tex]

Simplify

[tex]-16p=0[/tex]

Divide both sides by -16

[tex]\frac{-16p}{-16}=\frac{0}{-16}[/tex]

[tex]p=0[/tex]

Thus, the solution to the system of equations

  • p = 0
  • q = -50

Hence, the value of q = -50