Answer:
[tex]W_s \approx5.3[/tex]
Step-by-step explanation:
From the question we are told that
Height [tex]H=3.5ft[/tex]
Weight [tex]W= 6ft[/tex]
Depth [tex]D=0.95ft[/tex]
Generally the equation for ellipses is given as
[tex]\frac{x^2}{a^2} +\frac{y^2}{b^2} =1[/tex]
Where
[tex]b=H/2\\b=3.5/2\\Therefore\\b=1.75\\a=W/2\\a=6/2\\Therefore\\a=3\\[/tex]
[tex]\frac{x^2}{3^2} +\frac{y^2}{1.75^2} =1[/tex]
Generally to find y in the equation [tex]\frac{x^2}{a^2} +\frac{y^2}{b^2} =1[/tex]
[tex]y=-b+d[/tex]
[tex]y=-1.75+0.95[/tex]
[tex]y=-0.8[/tex]
Therefore
[tex]\frac{x^2}{3^2} +\frac{(0.8)^2}{1.75^2} =1[/tex]
[tex]\frac{x^2}{3^2} =1-\frac{(0.8)^2}{1.75^2}[/tex]
[tex]\frac{x^2}{3^2} =1-0.2089795918[/tex]
[tex]X^2 =3^2(1-0.2089795918)[/tex]
[tex]X^2 =7.119183674[/tex]
[tex]X =\sqrt{7.119183674}[/tex]
[tex]X =2.66817984[/tex]
Therefore the width of the given stream is
[tex]W_s=2.66817984*2[/tex]
[tex]W_s=5.33635968[/tex]
[tex]W_s \approx5.3[/tex]