A missile is launched upward with a speed that is half the escape speed. What height (in radii of Earth) will it reach?

Respuesta :

Answer:

The height (h) will be: [tex]\frac{3}{4}R =h[/tex]  

Explanation:

The scape speed equation is given by:

[tex]v_{scape}=\sqrt{\frac{2GM}{R}}[/tex]

Now, the speed of the missile is

[tex]v_{missile}=\frac{1}{2}v_{scape}[/tex]

[tex]v_{scape}=\frac{1}{2}\sqrt{\frac{2GM}{R}}[/tex]

Using the conservation of energy, we can find the maximu height of the missile.

[tex]E_{i}=E_{f}[/tex]

[tex]\frac{1}{2}mv_{scape}^{2}-mgR =-mgh[/tex]

[tex]\frac{1}{2}\frac{2GM}{4R}-gR =-gh[/tex]

[tex]\frac{GM}{4R}-gR =gh[/tex]

Let's recall that g = GM/R², using the equivalence principle. When R is the radius of the earth and M is the mass of the earth.

[tex]\frac{1}{4}gR-gR =-gh[/tex]

[tex]\frac{1}{4}R-R =-h[/tex]    

Therefore the height (h) will be:

[tex]\frac{3}{4}R =h[/tex]    

I hope it helps you!