Respuesta :

Answer:

The 8th term of the geometric sequence 5, -15, 45, ... is:

[tex]a_8=-10935[/tex]

Step-by-step explanation:

Given the geometric sequence

5, -15, 45, ...

The first element of the geometric sequence is

[tex]a_1=5[/tex]

A geometric sequence has a constant ratio 'r' and is defined by  

[tex]a_n=a_1\cdot r^{n-1}[/tex]

computing the ratios of all the adjacent terms

[tex]\frac{-15}{5}=-3,\:\quad \frac{45}{-15}=-3[/tex]

The ratio between all the adjacent terms is the same and equal to

[tex]r=-3[/tex]

substituting [tex]a_1=5[/tex], and [tex]r=-3[/tex] in the nth term

[tex]a_n=a_1\cdot r^{n-1}[/tex]

[tex]a_n=5\left(-3\right)^{n-1}[/tex]

Determining the 8th term:

We have already got the nth term

[tex]a_n=5\left(-3\right)^{n-1}[/tex]

substituting n = 8 to determine the 8th term

[tex]a_n=5\left(-3\right)^{n-1}[/tex]

[tex]a_8=5\left(-3\right)^{8-1}[/tex]

[tex]a_8=5\left(-3^7\right)[/tex]

[tex]a_8=-5\cdot \:3^7[/tex]

[tex]a_8=-5\cdot \:2187[/tex]

[tex]a_8=-10935[/tex]

Therefore, the 8th term of the geometric sequence 5, -15, 45, ... is:

[tex]a_8=-10935[/tex]

Otras preguntas