Respuesta :

Answer:

[tex]\sin \left(90^{\circ \:}-x\right)=\cos \left(x\right)[/tex]

Hence, option D is correct.

Step-by-step explanation:

Given the expression

[tex]sin\:\left(90^{\circ }\:-\:x\right)[/tex]

Using the angle difference identity

[tex]\sin \left(s-t\right)=\sin \left(s\right)\cos \left(t\right)-\cos \left(s\right)\sin \left(t\right)[/tex]

so the expression becomes

[tex]sin\:\left(90^{\circ }\:-\:x\right)=\sin \:\left(90^{\circ \:\:}\right)\cos \:\left(x\right)-\cos \:\left(90^{\circ \:\:}\right)\sin \:\left(x\right)[/tex]

as sin 90° = 1

so sin 90° cos x = cos x

also

cos 90° = 0

so con (90°) sin x = 0

Thus, the expression becomes

[tex]\sin \:\left(90^{\circ \:\:}\right)\cos \:\left(x\right)-\cos \:\left(90^{\circ \:\:}\right)\sin \:\left(x\right)=\cos \:\left(x\right)-0[/tex]

                                                           [tex]= cos (x)[/tex]      ∵ [tex]\cos \left(x\right)-0=\cos \left(x\right)[/tex]

Therefore,

[tex]\sin \left(90^{\circ \:}-x\right)=\cos \left(x\right)[/tex]

Hence, option D is correct.