Respuesta :

Answer:

[tex]\frac{c}{a}[/tex] and [tex]\frac{b}{a}[/tex]

Step-by-step explanation:

sinB = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{AC}{BC}[/tex] = [tex]\frac{b}{a}[/tex]

tanC = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{AB}{AC}[/tex] = [tex]\frac{c}{b}[/tex]

Thus

sinB tanC = [tex]\frac{b}{a}[/tex] × [tex]\frac{c}{b}[/tex] ( cancel b on numerator/ denominator )

                 = [tex]\frac{c}{a}[/tex]

---------------------------------------------------------------------------

sinC = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{AB}{BC}[/tex] = [tex]\frac{c}{a}[/tex]

tanB = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{AC}{AB}[/tex] = [tex]\frac{b}{c}[/tex]

Thus

sinC tanB = [tex]\frac{c}{a}[/tex] × [tex]\frac{b}{c}[/tex] ( cancel c on numerator/ denominator )

                 = [tex]\frac{b}{a}[/tex]