[tex]\huge\boxed{y=-\frac{4}{13}+1}[/tex]
First, let's find the slope ([tex]m[/tex]) of the line using the two points:
[tex]\begin{aligned}m&=\frac{y_2-y_1}{x_2-x_1}\\&=\frac{-3-1}{13-0}\\&=\frac{-4}{13}\\&=-\frac{4}{13}\end{aligned}[/tex]
Now, we'll use point-slope form using the first point and the slope to get an equation for the line.
[tex]\begin{aligned}y-y_1&=m(x-x_1)\\y-1&=-\frac{4}{13}(x-0)\end{aligned}[/tex]
Now, we just need to get the equation to slope-intercept form, which is [tex]y=mx+b[/tex].
[tex]\begin{aligned}y-1&=-\frac{4}{13}x\\y&=-\frac{4}{13}x+1\end{aligned}[/tex]