Respuesta :

Answer:

2021

Step-by-step explanation:

The simplified numerical value of the given expression that is: (4042 + 4040 + 4038 + … + 6 + 4 + 2) −(4041 + 4039 + 4037 + … + 5 + 3 + 1) is 2021 and this can be determined by using the formula of nth terms and sum of n terms in arithmetic progression.

Given :

Arithmetic Progression --  (4042 + 4040 + 4038 + … + 6 + 4 + 2) −(4041 + 4039 + 4037 + … + 5 + 3 + 1)

The given expression can be written as the sum of two arithmetic progressions, that is:

[tex]\rm = B_1+B_2[/tex]

where [tex]\rm B_1[/tex] is (4042 + 4040 + 4038 + … + 6 + 4 + 2) and [tex]\rm B_2[/tex] is (4041 + 4039 + 4037 + … + 5 + 3 + 1).

The number of terms in progressions [tex]\rm B_1[/tex] and [tex]\rm B_2[/tex].

In progression [tex]\rm B_1[/tex] the total number of terms are:

[tex]2=4042+(n-1)(-2)[/tex]

-4040 = -2(n - 1)

2020 = n - 1

2021 = n

In progression [tex]\rm B_2[/tex] the total number of terms are:

[tex]1=4041+(n-1)(-2)[/tex]

-4040 = -2(n - 1)

2020 = n - 1

n = 2021

The sum of n terms in the arithmetic progression [tex]\rm B_1[/tex] is:

[tex]\rm S_n = \dfrac{2021}{2}(2(4042)+(2021-1)(-2))[/tex]

[tex]\rm S_n = {2021}(4042-2020)[/tex]

[tex]\rm S_n =4126882[/tex]

The sum of n terms in the arithmetic progression [tex]\rm B_2[/tex] is:

[tex]\rm S_n = \dfrac{2021}{2}(2(4041)+(2021-1)(-2))[/tex]

[tex]\rm S_n = {2021}(4041-2020)[/tex]

[tex]\rm S_n =4124861[/tex]

So, the value of [tex]\rm (B_1-B_2)[/tex] is:

= 4086462 - 4084441

= 2021

The simplified numerical value of the given expression that is: (4042 + 4040 + 4038 + … + 6 + 4 + 2) −(4041 + 4039 + 4037 + … + 5 + 3 + 1) is 2021.

For more information, refer to the link given below

https://brainly.com/question/9230320