Respuesta :

Answer:

B) (x-1/2)^2 + (y+8)^2 = 65/4

Step-by-step explanation:

Edge 2020

A diameter would be the length of the line that passes through the center and hits two points just on the circle's edge.

Diameter of a circle:

points:

(–3, –10) and (4, –6)

Using the points to substituting/ find the mid value:

[tex]\to (\frac{x_1+x_2}{2} , \frac{y_1+y_2}{2}) : (\frac{-3+4}{2},\frac{-10-6}{2})[/tex]

Calculating the sum / difference value that are:

[tex]\to \frac{1}{2}\\\\\to \frac{-16}{2}\\\\[/tex]

Rewriting the fraction value that is:

[tex]\to -\frac{16}{2}[/tex]

Calculating the cross out of the common factors that are:  -8

Rewriting the solution as the coordinate that are :[tex](\frac{1}{2} , -8)[/tex]

Writing the properties of the circle that are:

General form of equation: [tex]x^2+y^2-x+16y+48=0[/tex]

Standard form equation:[tex](x-\frac{1}{2})^2+ (y+8)^2=\frac{65}{4}[/tex]

center: [tex](\frac{1}{2}, -8)[/tex]

radius: [tex]\frac{\sqrt{65}}{2}[/tex]

diameter: [tex]\sqrt{65}[/tex]

area: [tex]\frac{65 \pi}{4}[/tex]

circumference:[tex]\sqrt{65\pi}[/tex]

domain: [tex]\frac{1}{2}-\frac{\sqrt{65}}{2} \leq x \leq \frac{1}{2}+ \frac{\sqrt{65}}{2}[/tex]

range:[tex]-8 -\frac{\sqrt{65}}{2}\leq y \leq -8 +\frac{\sqrt{65}}{2}[/tex]

Find out more about the diameter of a circle here: brainly.com/question/266951