Respuesta :
Answer:
B) (x-1/2)^2 + (y+8)^2 = 65/4
Step-by-step explanation:
Edge 2020
A diameter would be the length of the line that passes through the center and hits two points just on the circle's edge.
Diameter of a circle:
points:
(–3, –10) and (4, –6)
Using the points to substituting/ find the mid value:
[tex]\to (\frac{x_1+x_2}{2} , \frac{y_1+y_2}{2}) : (\frac{-3+4}{2},\frac{-10-6}{2})[/tex]
Calculating the sum / difference value that are:
[tex]\to \frac{1}{2}\\\\\to \frac{-16}{2}\\\\[/tex]
Rewriting the fraction value that is:
[tex]\to -\frac{16}{2}[/tex]
Calculating the cross out of the common factors that are: -8
Rewriting the solution as the coordinate that are :[tex](\frac{1}{2} , -8)[/tex]
Writing the properties of the circle that are:
General form of equation: [tex]x^2+y^2-x+16y+48=0[/tex]
Standard form equation:[tex](x-\frac{1}{2})^2+ (y+8)^2=\frac{65}{4}[/tex]
center: [tex](\frac{1}{2}, -8)[/tex]
radius: [tex]\frac{\sqrt{65}}{2}[/tex]
diameter: [tex]\sqrt{65}[/tex]
area: [tex]\frac{65 \pi}{4}[/tex]
circumference:[tex]\sqrt{65\pi}[/tex]
domain: [tex]\frac{1}{2}-\frac{\sqrt{65}}{2} \leq x \leq \frac{1}{2}+ \frac{\sqrt{65}}{2}[/tex]
range:[tex]-8 -\frac{\sqrt{65}}{2}\leq y \leq -8 +\frac{\sqrt{65}}{2}[/tex]
Find out more about the diameter of a circle here: brainly.com/question/266951