Answer:
Solving the quadratic equation [tex]8v^2+37v=0[/tex] we get: [tex]\mathbf{v=0\:or\:v=\frac{-37}{8}}[/tex]
Step-by-step explanation:
We need to solve the quadratic equation: [tex]8v^2+37v=0[/tex]
We can solve the quadratic equation of form [tex]ax^2+bx+c=0[/tex] using quadratic formula: [tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]
We need to put values of a , b and c in order to find the solutions of quadratic equations.
In the given equation: [tex]8v^2+37v=0[/tex] we have, a =8, b=37, c=0
Putting values and finding the values for n:
[tex]v=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\\v=\frac{-37\pm\sqrt{(-37)^2-4(8)(0)}}{2(8)}\\v=\frac{-37\pm\sqrt{(-37)^2-0}}{2(8)}\\v=\frac{-37\pm\sqrt{1369}}{2(8)}\\v=\frac{-37\pm37}{2(8)}\\v=\frac{-37+37}{2(8)}\:or\:v=\frac{-37-37}{2(8)}\\v=\frac{0}{2(8)}\:or\:v=\frac{-74}{2(8)}\\v=0\:or\:v=\frac{-37}{8}[/tex]
So, solving the quadratic equation [tex]8v^2+37v=0[/tex] we get: [tex]\mathbf{v=0\:or\:v=\frac{-37}{8}}[/tex]