Respuesta :

Answer:

The zeros of the function:

[tex]x=2,\:x=-4[/tex]

Step-by-step explanation:

Given the function

[tex]f\left(x\right)=x^2+2x-8[/tex]

In order to determine the zeros of the function, substitute f(x) = 0

[tex]x^2+2x-8\:=0[/tex]

Breaking the expression x²+2x-8=0 into groups

[tex]\:\left(x^2-2x\right)+\left(4x-8\right)=0[/tex]

Factor out x from x²-2x:   x(x-2)

Factor out 4 from 4x-8:   4(x-2)

so

[tex]x\left(x-2\right)+4\left(x-2\right)=0[/tex]

Factor out common term: x-2

[tex]\left(x-2\right)\left(x+4\right)=0[/tex]

Using the zero factor principle

if ab=0, then a=0 or b=0 (or both a=0 and b=0)

[tex]x-2=0\quad \mathrm{or}\quad \:x+4=0[/tex]

solving x+2 = 0

x+2 = 0

x = -2

solving x+4=0

x+4 = 0

x = -4

Therefore, the zeros of the function:

[tex]x=2,\:x=-4[/tex]