Answer:
The equation for the description is: [tex]\mathbf{123=2(2x+x)\:or\:123=6x}[/tex]
Step-by-step explanation:
We need to write an equation for the description.
The length of a rectangle is twice its width. The perimeter of the rectangle is 123 feet.
Let Width of rectangle = x
Length of rectangle = 2x (twice its width means, multiplying 2 with width)
Perimeter of rectangle = 123 feet
The formula used is: [tex]Perimeter\:of\:rectangle=2(Length\times Width)[/tex]
Putting values and finding equation:
[tex]Perimeter\:of\:rectangle=2(Length+ Width)\\123=2(2x+x)[/tex]
So, the equation for the description is: [tex]\mathbf{123=2(2x+x)}[/tex]
You can simplify the equation as:
[tex]123=2(2x+x)\\123=2(3x)\\123=6x[/tex]
Both equations can be used: [tex]\mathbf{123=2(2x+x)\:or\:123=6x}[/tex]