contestada

Write an equation for the description.
The length of a rectangle is twice its width. The perimeter of the rectangle is 123 feet.

Respuesta :

Answer:

The equation for the description is: [tex]\mathbf{123=2(2x+x)\:or\:123=6x}[/tex]

Step-by-step explanation:

We need to write an equation for the description.

The length of a rectangle is twice its width. The perimeter of the rectangle is 123 feet.

Let Width of rectangle = x

Length of rectangle = 2x (twice its width means, multiplying 2 with width)

Perimeter of rectangle = 123 feet

The formula used is: [tex]Perimeter\:of\:rectangle=2(Length\times Width)[/tex]

Putting values and finding equation:

[tex]Perimeter\:of\:rectangle=2(Length+ Width)\\123=2(2x+x)[/tex]

So, the equation for the description is: [tex]\mathbf{123=2(2x+x)}[/tex]

You can simplify the equation as:

[tex]123=2(2x+x)\\123=2(3x)\\123=6x[/tex]

Both equations can be used: [tex]\mathbf{123=2(2x+x)\:or\:123=6x}[/tex]