Answer:
The object that is the most dense is 1000 grams per cubic milimeter.
Explanation:
A cubic meter is equal to 1,000,000,000 cubic milimeters, 1 kilogram is equal to 1000 kilograms. First, we convert each quantity to grams per cubic milimeter:
a) [tex]1\,\frac{kg}{m^{3}}\times \frac{1,000\,g}{1\,kg} \times \frac{1\,m^{3}}{1,000,000,000\,mm^{3}} = \frac{1\,g}{1,000,000\,mm^{3}}[/tex]
b) [tex]1\,\frac{g}{m^{3}}\times \frac{1\,m^{3}}{1,000,000,000\,mm^{3}} = \frac{1\,g}{1,000,000,000\, mm^{3}}[/tex]
c) [tex]1\,\frac{kg}{mm^{3}}\times \frac{1,000\,g}{1\,kg} = 1000\,\frac{g}{mm^{3}}[/tex]
A greater density means that an object is more dense, therefore, the object that is the most dense is 1000 grams per cubic milimeter.