The system Px + Qy=R Tx + Uy=V has the solution (2,9), where P,Q,R,T,U and V does not equal 0. Select all systems of equations that have the same solution.

Respuesta :

Options:

a.

[tex]Px + Qy = R\\(P + T)x + (Q + U)y = R + V[/tex]

b.

[tex]Px + Qy = R\\(P +2T)x +Q + 2U)y = R- 2V[/tex]

c.

[tex](T - P)x - (U - Q)y = V - R\\Tx + Uy = V[/tex]

d

[tex](T - P)x +(Q + U)y = V - R\\Tx + Uy = V[/tex]

Answer:

a.

[tex]Px + Qy = R\\(P + T)x + (Q + U)y = R + V[/tex]

c.

[tex](T - P)x - (U - Q)y = V - R\\Tx + Uy = V[/tex]

Step-by-step explanation:

Given

[tex]Px + Qy = R[/tex] --- (1)

[tex]Tx + Uy = V[/tex] --- (2)

[tex]Solution = (2,9)[/tex]

Required

Select equations with same solution

Add equation (1) to (2)

[tex]Px + Qy = R[/tex] --- (1)

[tex]Tx + Uy = V[/tex] --- (2)

_________________

[tex]Px + Tx + Qy + Uy = R + V[/tex]

Factorize:

[tex](P + T)x + (Q + U)y = R + V[/tex] --- (3)

So, a system of (1) and (3) can be represented as:

[tex]Px + Qy = R\\(P + T)x + (Q + U)y = R + V[/tex]

This means (a) has the same solution.

Another possible solution is as follows:

Subtract equation (1) from (2)

[tex]Tx + Uy = V[/tex] --- (2)

[tex]Px + Qy = R[/tex] --- (1)

_________________

[tex]Tx - Px + Uy - Qy = V - R[/tex]

Factorize

[tex](T - P)x + (U - Q)y = V - R[/tex] --- (4)

So, a system of (2) and (4) can be represented as:

[tex](T - P)x - (U - Q)y = V - R\\Tx + Uy = V[/tex]

This means (c) has the same solution.

Options (a) and (c) have the same solution.